Week 4 - Friday

COMP 3400



= What did we talk about last time?
= Pipes



Questions?




Project 1







= Let's go back to our command-line example:

sort foo.txt | grep -i error | head -n 10

What's happening behind the scenes?

The shellis calling fork () and exec () to run each of those processes
Then, each process is linked to the next one with a pipe

But how do those arbitrary processes know to read from or write to a pipe?
They don't, so the shell magically changes stdout or stdin to pipe file
descriptors

sort L} m O

redirected redirected redirected redirected
stdout stdin stdout stdin



= The dup2 () function closes a new file descriptor and
replaces it with an old file descriptor

int dup2 (int oldfd, int newfd);

= This function is used by the shell to close their stdin or
stdout and replace it with an end of a pipe

= The syntax is confusing:
= We keep the first file descriptor
= We replace the second one



dup2 () example

The output of Child 2 becomes the input of Child 1

assert ((child pid = fork ()) >= 0); // Child 1
if (child pid == 0)
{

close (pipefd[l]); // Close write end of pipe
dup2 (pipefd[0], STDIN FILENO); // Reading from stdin reads from pipe
char *buffer = NULL;
size t size = 0;
getline (&buffer, &size); // Function that reads a line, resizing buffer as needed
printf ("Received: '%s'\n", buffer);
free (buffer);
exit (0);
}

assert ((child pid = fork ()) >= 0); // Child 2
if (child pid == 0)
{
close (pipefd[0]); // Close read end of pipe
dup2 (pipefd[l], STDOUT FILENO); // Writing to screen writes to pipe
printf ("Now is the winter of our discontent\n");
exit (0);
}
close (pipefd[0]); // Parent closes both ends of the pipe for itself
close (pipefd[1l]);
wait (NULL); // Wait for children to finish







= Pipes are great for parent and child processes

= Create the pipes in the parent, use them in the children
= But what if two unrelated processes want to share a pipe?
= FIFOs or named pipes are pipes associated with a file name
= These files can be seen in the file system, but they're special
files intended only for use as pipes
= Naming:
= |n Linu, it's common to put these files in the /tmp/ directory

= It's important to pick a file name that's unlikely to collide with other
FIFOs



= Themkfifo () functionis used to create a FIFO

int mkfifo (const char *path, mode t mode);

= The mode is a bitwise OR of the permissions you want the FIFO to
have (who can read and write)

= Using it creates the FIFO (which looks like a file), but programs still
have to open it to use it and close it when done

= Afterthe FIFO is done being used, the unlink () function
removes the path from the file system

int unlink (const char *path);




FIFO example reader

The following code creates a FIFO and reads int values until it getsa O

const char *FIFO = "/tmp/MY FIFO";

assert (mkfifo (FIFO, S IRUSR | S IWUSR) == 0);

int fifo = open (FIFO, O RDONLY); // Open FIFO, delete if fails
if (fifo == -1)

{
fprintf (stderr, "Failed to open FIFO\n");

unlink (FIFO) ;
return 1;

}

bool done = false;
while ('done)

{

int value = 0;
if (read (fifo, &value, sizeof (int)) == sizeof (int)) {
if (value == 0)
done = true;
else

printf ("%d\n", value);

close (fifo);
unlink (FIFO) ;




FIFO example writer

The following code opens the FIFO and writes 6 int values to it

const char *FIFO = "/tmp/MY FIFO";

int fifo = open (FIFO, O WRONLY) ;
assert (fifo '= -1);

for (int index = 5; index >= 0; index--)

{
write (fifo, é&index, sizeof (int));
sleep (1); // Sleep for a second before writing more

}

close (fifo);




Memory-Mapped Files




Having covered pipes and FIFOs, we'll jump to the other side of
the fence and talk about shared memory

One shared memory technique are memory-mapped files

A normal file is mapped into the virtual memory of a process
Data can be read and written into that memory using normal
pointer operations

= And the data will magically get read and written to the file!

One process can use memory-mapped files to interact with a file
without using read () orwrite () calls

But two or more processes can use memory-mapped files to
exchange data directly



Visualization

= There's actually a special segment
we haven't talked about in virtual
memory before used just for
memory mapping

= Between the heap and the stack

= The virtual memory system is able
to read only needed parts of the
file into memory (often a page at a
time)

= Storing data into this memory is
eventually written back to the file

File
9eebba32
6a320e2d
d39a8£04
1db89c49
56b3a80a

Kernel

Memory Map

Heap




= Over reqular file access

= Multiple processes can have read-only access to a common file

Often done with shared libraries, so that many different processes are able to access,
for example, the same code forprint£ ()

= Programs can sometimes be simpler because there's no need to use
fseek () tojump around afile

= Reading files can be more efficient because the file contents don't have to
be copied into the kernel's buffer cache

= Compared to other kinds of IPC
= Writable memory-mapped files are fast for IPC

= Unlike message passing, data continues to exist and can be read
repeatedly



= Themmap () function returns memory mapped to a particular file descriptor

void *mmap (void *addr, size t length, int prot, int flags,
int £fd, off t offset);

addr is a suggestion for where the memory goes but should usually be NULL
length is how many bytes to map
prot are flags shown on the right that can be combined

flags are MAP_SHARED or MAP PRIVATE (and others), depending on whether
the area is shared

fd is an open file descriptor for a file Actions permitted

of fset is the starting point inside the file PROT NONE May not be accessed
PROT_READ Region can be read
PROT_WRITE Region canbe modified
PROT_EXEC Region can be executed



* Themunmap () function unmaps an existing map

void munmap (void *addr, size t length);

= addr is the start of the mapped address

= lengthis how muchto unmap
= Themsync () function synchronizes the file with the mapped memory

void msync (void *addr, size t length, int flags);

= MS_ASYNC flag returns immediately and MS_ SYNC waits for the sync to
complete



If the goal is simply easy file interaction, you don't have to
worry about when any updates are made

But if you're trying to do IPC, the timing of when memory
writes become disk writes becomes important

The OS might occasionally write updated memory to files
But some file systems won't write changes to files until the
connection is closed

If it's important, call themsynec () function to make the
updates happen



Example

The following example checks to make sure that the 279, 37, and 4™ bytes of an executable
are "ELF", a marker of the executable and linking format used by Linux

int fd = open ("/bin/bash", O RDONLY) ;
assert (fd !'= -1);

struct stat file info;
assert (fstat (fd, &file info) != -1);

// Map whole file for reading, unshared
char *mapping = mmap (NULL, file info.st size, PROT READ, MAP PRIVATE, fd, O0);
assert (mapping !'= MAP FAILED) ;

// Bytes 1 - 3 of the file must be 'E', 'L', 'F'

if (mapping[l] == 'E' && mapping[2] == 'L' && mapping[3] == 'F')
printf ("Valid executable!\n") ;

else

printf ("Invalid executable!\n");

munmap (mapping, file info.st size); // Unmap file and close it
close (£f4d);




Programming practice

Memory map a bitmap file read in from the user
Then, write out the contents of the header, which should match the following struct:

struct BitmapHeader {
unsigned char type[2];
unsigned int size;
unsigned int reserved;
unsigned int offset;
unsigned int header;
unsigned int width;
unsigned int height;
unsigned short planes;
unsigned short bits;
unsigned int compression;
unsigned int dataSize;

unsigned int horizontalResolution;

unsigned int verticalResolution;
unsigned int colors;
unsigned int importantColors;

R O O O N N
R S O

always contains 'B' and 'M'

total size of file

always O

start of data from front of file
size of header, always 40

width of image in pixels

height of image in pixels

planes in image, always 1

color bit depths, always 24

always O

size of color data in bytes
unreliable, use 72 when writing
unreliable, use 72 when writing
colors in palette, use 0 when writing
important colors, use 0 when writing




Upcoming




= POSIXvs. SystemV IPC
= Message queues



= Finish Project 1!

= Due Monday by midnight!
= Read sections 3.5and 3.6



	COMP 3400
	Last time
	Questions?
	Project 1
	Pipes
	Pipes and shell commands
	dup2()
	dup2() example
	FIFOs
	FIFOs
	The mkfifo() function
	FIFO example reader
	FIFO example writer
	Memory-Mapped Files
	Memory-mapped files
	Visualization
	Advantages
	Mechanics
	Other useful functions
	When updates happen
	Example
	Programming practice
	Upcoming
	Next time…
	Reminders

