
Week 4 - Friday

 What did we talk about last time?
 Pipes

 Let's go back to our command-line example:

 What's happening behind the scenes?
 The shell is calling fork() and exec() to run each of those processes
 Then, each process is linked to the next one with a pipe
 But how do those arbitrary processes know to read from or write to a pipe?
 They don't, so the shell magically changes stdout or stdin to pipe file

descriptors

sort foo.txt | grep -i error | head -n 10

sort grep head
redirected
stdout

redirected
stdin

redirected
stdout

redirected
stdin

 The dup2() function closes a new file descriptor and
replaces it with an old file descriptor

 This function is used by the shell to close their stdin or
stdout and replace it with an end of a pipe

 The syntax is confusing:
 We keep the first file descriptor
 We replace the second one

int dup2 (int oldfd, int newfd);

 The output of Child 2 becomes the input of Child 1
assert ((child_pid = fork ()) >= 0); // Child 1
if (child_pid == 0)

{
close (pipefd[1]); // Close write end of pipe
dup2 (pipefd[0], STDIN_FILENO); // Reading from stdin reads from pipe
char *buffer = NULL;
size_t size = 0;
getline (&buffer, &size); // Function that reads a line, resizing buffer as needed
printf ("Received: '%s'\n", buffer);
free (buffer);
exit (0);

}

assert ((child_pid = fork ()) >= 0); // Child 2
if (child_pid == 0)

{
close (pipefd[0]); // Close read end of pipe
dup2 (pipefd[1], STDOUT_FILENO); // Writing to screen writes to pipe
printf ("Now is the winter of our discontent\n");
exit (0);

}
close (pipefd[0]); // Parent closes both ends of the pipe for itself
close (pipefd[1]);
wait (NULL); // Wait for children to finish

 Pipes are great for parent and child processes
 Create the pipes in the parent, use them in the children

 But what if two unrelated processes want to share a pipe?
 FIFOs or named pipes are pipes associated with a file name
 These files can be seen in the file system, but they're special

files intended only for use as pipes
 Naming:
 In Linux, it's common to put these files in the /tmp/ directory
 It's important to pick a file name that's unlikely to collide with other

FIFOs

 The mkfifo() function is used to create a FIFO

 The mode is a bitwise OR of the permissions you want the FIFO to
have (who can read and write)

 Using it creates the FIFO (which looks like a file), but programs still
have to open it to use it and close it when done

 After the FIFO is done being used, the unlink() function
removes the path from the file system

int mkfifo (const char *path, mode_t mode);

int unlink (const char *path);

 The following code creates a FIFO and reads int values until it gets a 0
const char *FIFO = "/tmp/MY_FIFO";
assert (mkfifo (FIFO, S_IRUSR | S_IWUSR) == 0);
int fifo = open (FIFO, O_RDONLY); // Open FIFO, delete if fails
if (fifo == -1)

{
fprintf (stderr, "Failed to open FIFO\n");
unlink (FIFO);
return 1;

}

bool done = false;
while (!done)
{
int value = 0;
if (read (fifo, &value, sizeof (int)) == sizeof (int)) {

if (value == 0)
done = true;

else
printf ("%d\n", value);

}
close (fifo);
unlink (FIFO);

 The following code opens the FIFO and writes 6 int values to it

const char *FIFO = "/tmp/MY_FIFO";

int fifo = open (FIFO, O_WRONLY);
assert (fifo != -1);

for (int index = 5; index >= 0; index--)
{
write (fifo, &index, sizeof (int));
sleep (1); // Sleep for a second before writing more

}

close (fifo);

 Having covered pipes and FIFOs, we'll jump to the other side of
the fence and talk about shared memory

 One shared memory technique are memory-mapped files
 A normal file is mapped into the virtual memory of a process
 Data can be read and written into that memory using normal

pointer operations
 And the data will magically get read and written to the file!

 One process can use memory-mapped files to interact with a file
without using read() or write() calls

 But two or more processes can use memory-mapped files to
exchange data directly

Kernel

Stack

Memory Map

Heap

Data

Code

 There's actually a special segment
we haven't talked about in virtual
memory before used just for
memory mapping
 Between the heap and the stack

 The virtual memory system is able
to read only needed parts of the
file into memory (often a page at a
time)

 Storing data into this memory is
eventually written back to the file

Disk

File
9eebba32
6a320e2d
d39a8f04
1db89c49
56b3a80a

 Over regular file access
 Multiple processes can have read-only access to a common file
▪ Often done with shared libraries, so that many different processes are able to access,

for example, the same code for printf()
 Programs can sometimes be simpler because there's no need to use
fseek() to jump around a file

 Reading files can be more efficient because the file contents don't have to
be copied into the kernel's buffer cache

 Compared to other kinds of IPC
 Writable memory-mapped files are fast for IPC
 Unlike message passing, data continues to exist and can be read

repeatedly

 The mmap() function returns memory mapped to a particular file descriptor

 addr is a suggestion for where the memory goes but should usually be NULL
 length is how many bytes to map
 prot are flags shown on the right that can be combined
 flags are MAP_SHARED or MAP_PRIVATE (and others), depending on whether

the area is shared
 fd is an open file descriptor for a file
 offset is the starting point inside the file

void *mmap (void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

Protection Actions permitted
PROT_NONE May not be accessed
PROT_READ Region can be read
PROT_WRITE Region can be modified
PROT_EXEC Region can be executed

 The munmap() function unmaps an existing map

 addr is the start of the mapped address
 length is how much to unmap

 The msync() function synchronizes the file with the mapped memory

 MS_ASYNC flag returns immediately and MS_SYNCwaits for the sync to
complete

void munmap (void *addr, size_t length);

void msync (void *addr, size_t length, int flags);

 If the goal is simply easy file interaction, you don't have to
worry about when any updates are made

 But if you're trying to do IPC, the timing of when memory
writes become disk writes becomes important

 The OS might occasionally write updated memory to files
 But some file systems won't write changes to files until the

connection is closed
 If it's important, call the msync() function to make the

updates happen

 The following example checks to make sure that the 2nd, 3rd, and 4th bytes of an executable
are "ELF", a marker of the executable and linking format used by Linux

int fd = open ("/bin/bash", O_RDONLY);
assert (fd != -1);

struct stat file_info;
assert (fstat (fd, &file_info) != -1);

// Map whole file for reading, unshared
char *mapping = mmap (NULL, file_info.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
assert (mapping != MAP_FAILED);

// Bytes 1 - 3 of the file must be 'E', 'L', 'F'
if (mapping[1] == 'E' && mapping[2] == 'L' && mapping[3] == 'F')

printf("Valid executable!\n");
else

printf("Invalid executable!\n");

munmap (mapping, file_info.st_size); // Unmap file and close it
close (fd);

 Memory map a bitmap file read in from the user
 Then, write out the contents of the header, which should match the following struct:

struct BitmapHeader {
unsigned char type[2]; // always contains 'B' and 'M'
unsigned int size; // total size of file
unsigned int reserved; // always 0
unsigned int offset; // start of data from front of file
unsigned int header; // size of header, always 40
unsigned int width; // width of image in pixels
unsigned int height; // height of image in pixels
unsigned short planes; // planes in image, always 1
unsigned short bits; // color bit depths, always 24
unsigned int compression; // always 0
unsigned int dataSize; // size of color data in bytes
unsigned int horizontalResolution; // unreliable, use 72 when writing
unsigned int verticalResolution; // unreliable, use 72 when writing
unsigned int colors; // colors in palette, use 0 when writing
unsigned int importantColors; // important colors, use 0 when writing

};

 POSIX vs. System V IPC
 Message queues

 Finish Project 1!
 Due Monday by midnight!

 Read sections 3.5 and 3.6

	COMP 3400
	Last time
	Questions?
	Project 1
	Pipes
	Pipes and shell commands
	dup2()
	dup2() example
	FIFOs
	FIFOs
	The mkfifo() function
	FIFO example reader
	FIFO example writer
	Memory-Mapped Files
	Memory-mapped files
	Visualization
	Advantages
	Mechanics
	Other useful functions
	When updates happen
	Example
	Programming practice
	Upcoming
	Next time…
	Reminders

