
Week 4 - Friday

 What did we talk about last time?
 Pipes

 Let's go back to our command-line example:

 What's happening behind the scenes?
 The shell is calling fork() and exec() to run each of those processes
 Then, each process is linked to the next one with a pipe
 But how do those arbitrary processes know to read from or write to a pipe?
 They don't, so the shell magically changes stdout or stdin to pipe file

descriptors

sort foo.txt | grep -i error | head -n 10

sort grep head
redirected
stdout

redirected
stdin

redirected
stdout

redirected
stdin

 The dup2() function closes a new file descriptor and
replaces it with an old file descriptor

 This function is used by the shell to close their stdin or
stdout and replace it with an end of a pipe

 The syntax is confusing:
 We keep the first file descriptor
 We replace the second one

int dup2 (int oldfd, int newfd);

 The output of Child 2 becomes the input of Child 1
assert ((child_pid = fork ()) >= 0); // Child 1
if (child_pid == 0)

{
close (pipefd[1]); // Close write end of pipe
dup2 (pipefd[0], STDIN_FILENO); // Reading from stdin reads from pipe
char *buffer = NULL;
size_t size = 0;
getline (&buffer, &size); // Function that reads a line, resizing buffer as needed
printf ("Received: '%s'\n", buffer);
free (buffer);
exit (0);

}

assert ((child_pid = fork ()) >= 0); // Child 2
if (child_pid == 0)

{
close (pipefd[0]); // Close read end of pipe
dup2 (pipefd[1], STDOUT_FILENO); // Writing to screen writes to pipe
printf ("Now is the winter of our discontent\n");
exit (0);

}
close (pipefd[0]); // Parent closes both ends of the pipe for itself
close (pipefd[1]);
wait (NULL); // Wait for children to finish

 Pipes are great for parent and child processes
 Create the pipes in the parent, use them in the children

 But what if two unrelated processes want to share a pipe?
 FIFOs or named pipes are pipes associated with a file name
 These files can be seen in the file system, but they're special

files intended only for use as pipes
 Naming:
 In Linux, it's common to put these files in the /tmp/ directory
 It's important to pick a file name that's unlikely to collide with other

FIFOs

 The mkfifo() function is used to create a FIFO

 The mode is a bitwise OR of the permissions you want the FIFO to
have (who can read and write)

 Using it creates the FIFO (which looks like a file), but programs still
have to open it to use it and close it when done

 After the FIFO is done being used, the unlink() function
removes the path from the file system

int mkfifo (const char *path, mode_t mode);

int unlink (const char *path);

 The following code creates a FIFO and reads int values until it gets a 0
const char *FIFO = "/tmp/MY_FIFO";
assert (mkfifo (FIFO, S_IRUSR | S_IWUSR) == 0);
int fifo = open (FIFO, O_RDONLY); // Open FIFO, delete if fails
if (fifo == -1)

{
fprintf (stderr, "Failed to open FIFO\n");
unlink (FIFO);
return 1;

}

bool done = false;
while (!done)
{
int value = 0;
if (read (fifo, &value, sizeof (int)) == sizeof (int)) {

if (value == 0)
done = true;

else
printf ("%d\n", value);

}
close (fifo);
unlink (FIFO);

 The following code opens the FIFO and writes 6 int values to it

const char *FIFO = "/tmp/MY_FIFO";

int fifo = open (FIFO, O_WRONLY);
assert (fifo != -1);

for (int index = 5; index >= 0; index--)
{
write (fifo, &index, sizeof (int));
sleep (1); // Sleep for a second before writing more

}

close (fifo);

 Having covered pipes and FIFOs, we'll jump to the other side of
the fence and talk about shared memory

 One shared memory technique are memory-mapped files
 A normal file is mapped into the virtual memory of a process
 Data can be read and written into that memory using normal

pointer operations
 And the data will magically get read and written to the file!

 One process can use memory-mapped files to interact with a file
without using read() or write() calls

 But two or more processes can use memory-mapped files to
exchange data directly

Kernel

Stack

Memory Map

Heap

Data

Code

 There's actually a special segment
we haven't talked about in virtual
memory before used just for
memory mapping
 Between the heap and the stack

 The virtual memory system is able
to read only needed parts of the
file into memory (often a page at a
time)

 Storing data into this memory is
eventually written back to the file

Disk

File
9eebba32
6a320e2d
d39a8f04
1db89c49
56b3a80a

 Over regular file access
 Multiple processes can have read-only access to a common file
▪ Often done with shared libraries, so that many different processes are able to access,

for example, the same code for printf()
 Programs can sometimes be simpler because there's no need to use
fseek() to jump around a file

 Reading files can be more efficient because the file contents don't have to
be copied into the kernel's buffer cache

 Compared to other kinds of IPC
 Writable memory-mapped files are fast for IPC
 Unlike message passing, data continues to exist and can be read

repeatedly

 The mmap() function returns memory mapped to a particular file descriptor

 addr is a suggestion for where the memory goes but should usually be NULL
 length is how many bytes to map
 prot are flags shown on the right that can be combined
 flags are MAP_SHARED or MAP_PRIVATE (and others), depending on whether

the area is shared
 fd is an open file descriptor for a file
 offset is the starting point inside the file

void *mmap (void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

Protection Actions permitted
PROT_NONE May not be accessed
PROT_READ Region can be read
PROT_WRITE Region can be modified
PROT_EXEC Region can be executed

 The munmap() function unmaps an existing map

 addr is the start of the mapped address
 length is how much to unmap

 The msync() function synchronizes the file with the mapped memory

 MS_ASYNC flag returns immediately and MS_SYNCwaits for the sync to
complete

void munmap (void *addr, size_t length);

void msync (void *addr, size_t length, int flags);

 If the goal is simply easy file interaction, you don't have to
worry about when any updates are made

 But if you're trying to do IPC, the timing of when memory
writes become disk writes becomes important

 The OS might occasionally write updated memory to files
 But some file systems won't write changes to files until the

connection is closed
 If it's important, call the msync() function to make the

updates happen

 The following example checks to make sure that the 2nd, 3rd, and 4th bytes of an executable
are "ELF", a marker of the executable and linking format used by Linux

int fd = open ("/bin/bash", O_RDONLY);
assert (fd != -1);

struct stat file_info;
assert (fstat (fd, &file_info) != -1);

// Map whole file for reading, unshared
char *mapping = mmap (NULL, file_info.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
assert (mapping != MAP_FAILED);

// Bytes 1 - 3 of the file must be 'E', 'L', 'F'
if (mapping[1] == 'E' && mapping[2] == 'L' && mapping[3] == 'F')

printf("Valid executable!\n");
else

printf("Invalid executable!\n");

munmap (mapping, file_info.st_size); // Unmap file and close it
close (fd);

 Memory map a bitmap file read in from the user
 Then, write out the contents of the header, which should match the following struct:

struct BitmapHeader {
unsigned char type[2]; // always contains 'B' and 'M'
unsigned int size; // total size of file
unsigned int reserved; // always 0
unsigned int offset; // start of data from front of file
unsigned int header; // size of header, always 40
unsigned int width; // width of image in pixels
unsigned int height; // height of image in pixels
unsigned short planes; // planes in image, always 1
unsigned short bits; // color bit depths, always 24
unsigned int compression; // always 0
unsigned int dataSize; // size of color data in bytes
unsigned int horizontalResolution; // unreliable, use 72 when writing
unsigned int verticalResolution; // unreliable, use 72 when writing
unsigned int colors; // colors in palette, use 0 when writing
unsigned int importantColors; // important colors, use 0 when writing

};

 POSIX vs. System V IPC
 Message queues

 Finish Project 1!
 Due Monday by midnight!

 Read sections 3.5 and 3.6

	COMP 3400
	Last time
	Questions?
	Project 1
	Pipes
	Pipes and shell commands
	dup2()
	dup2() example
	FIFOs
	FIFOs
	The mkfifo() function
	FIFO example reader
	FIFO example writer
	Memory-Mapped Files
	Memory-mapped files
	Visualization
	Advantages
	Mechanics
	Other useful functions
	When updates happen
	Example
	Programming practice
	Upcoming
	Next time…
	Reminders

